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TECHNICAL MEMORANDUM
AN IN-DEPTH PROBABILISTIC STUDY OF EXTERNAL TANK ATTACH RING
I. INTRODUCTION

This work is part of an overall study in the area of evaluating the performance of the shuttle.
Besides the orbiter and space shuttle main engines (SSME’s), the other main items of a shuttle are the
solid rocket boosters (SRB’s), external tank (ET), and the ET attachment (ETA) ring. The present study
is restricted to the ETA, but the concepts discussed are general in nature and can be applied to any
structural component. The strengths of steel, the cross-sectional dimensions of the steel section, and thus
the strength of the model itself and the loads are all variable parameters. In other words, taking the entire
structural element under consideration, the resistance and the applied loads are random variables.
Consequently, the traditionally used deterministic analysis approach (the so-called factor of safety) does
not reveal the actual safety reserve in the structure, because it does not include the inherent variability in
the material, geometric, and load parameters. Such a variability can easily be included in the probabilis-
tic analyses using probabilistic methods which have been in use and continually improved over the last
two decades. The objective of this research work is to use some of the existing probabilistic methods to
calculate the reliability of the ETA ring at various critical sections for the limit state of stress. This is
done both in terms of the traditional probability of failure (pr) and reliability levels as well as the well-
known safety indices (ff) which have become a commonly accepted measure of safety.

For any probabilistic analysis, a certain deterministic model is nceded for which the limit state
function can be formulated in terms of the general basic variables of resistance and load. The variability
of the materials, cross-sectional properties, and load can then be incorporated into the deterministic
model, and the S value can be calculated which forms the basis of the probabilistic model. The detail
work of the deterministic model and the corresponding deterministic analysis were done by United
Space Boosters, Inc., (USBI)! under a general contract to Marshall Space Flight Center (MSFC) and
form a basis for the present probabilistic study.

II. DETERMINISTIC MODEL

The ETA ring used in the present analyses is part of the solid rocket aft booster assembly and is
located at SRB station 1511.0. It is the interface between the ET attach struts and the SRM. The ETA
ring is shown in figure 1. It extends a full 360° around the SRM case, and its cross section is shown in
figure 2. The details of the ETA ring are given elsewhere.2 The pertinent details needed for the prob-
abilistic study (discussed later in this report) are briefly dealt with in this section. The primary purpose
of the ETA ring is the distribution of concentrated attach strut loads circumferentially into the SRM
case. The strut attachment is a pinned connection designed to react loads in the plane of the ring.
Secondary out-of-plane loading exists if the struts are misaligned. Four splices are required for the ETA
ring configuration in figure 1. A typical spliced section is shown in figure 3. The outer systems tunnel
splice plate is 4340 steel, heat treated to 180 1b/inZ minimum tensile strength. The inner splice plate is
4130 steel, heat treated to 180 1b/in2 minimum strength.

The critical sections of the deterministic model of the ETA ring are found to be the tunnel splice
and H-fitting.! These are shown in figures 4 and 5. Figure 4 shows the strut fitting, and figure 5 shows
the tunnel splice.
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IIl. DETERMINISTIC FINITE ELEMENT ANALYSIS

Finite element analysis has been used! to analyze the ETA ring using the powerful finite element
code NASTRAN. The finite element model is shown in figure 6 which actually shows the underformed
plot of the ETA ring. It was developed using MSFC/NASTRAN, version 65A on the TBE VAX 11/780
computer system and executed on the Cray system at MSFC.
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Figure 6. ETA ring NASTRAN model boundary conditions (from ref. 1).

The ETA ring finite element model is described in detail in references 1 and 2. The model con-
sisted of approximately 10,000 nodes and 20,000 elements including some of the elements which are
quadrilateral and bar elements. The ETA ring modeling details are shown in figure 7. The boundary
conditions imposed on the NASTRAN model are shown in figure 6. NASTRAN output was obtained in
the form of a punch file for the 18 “unit” load cases described below.

1. SRM radial internal pressure (100 1b/in?)
2. Upper strut aligned (1 kip tension)

3. Upper strut aligned (1 kip compression)

4. Upper strut misaligned 90° forward (1 kip)

5. Upper strut misaligned 90° aft (1 kip)
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6. Lower strut aligned (1 kip tension)
7. Lower strut aligned (1 kip compression)
8. Lower strut misaligned 90° forward (1 kip)
9. Lower strut misaligned 90° aft (1 kip)
10. Diagonal strut aligned (1 kip tension)
11. Diagonal strut aligned (1 kip compression)
12. Diagonal strut misaligned 90° forward (1 kip)
13. Diagonal strut misaligned 90° aft (1 kip)
14. SRM axial load (106 Ib)
15. SRM bending moment M, (106 in-1b as sinusoidal axial load)
16. SRM bending moment M, (10% in-Ib as sinusoidal axial load)
17. Web/IEA cover axial pressure (1 1b/in?)
18. IEA cover radial pressure (1 1b/in2).

FORTRAN postprocessing codes were written to multiply the “unit” results by the actual loads
and linearly combine the results to create stresses and forces for each element and each load case. As
pointed out earlier, the critical sections to be studied in the probabilistic analyses (based on the determin-
istic finite element analyses) are tunnel splices and H-fitting. The load conditions studied are:
USLI108A, USLIO45A, USHI005D, and USHIO06D. For example, for USLI108A, the corresponding
equation for the total stress or force R (for 0° alignment) is given by:

R7=8.55R+9. 15R4+O.0R17+0.0R1g+60.5R15+44.0R16+177.1R3+49.5R6+17.6R11 . 1)

Similarly, the required forces can be obtained for other load conditions using the analysis load
combination in table 1 for the above-mentioned cases. For all combinations, the critical loads were
found to be lift off and high-Q load conditions.! Figure 1 and table 1 give details of these conditions. As
will be shown later, this method is intended to be used as one of the alternate approaches to simulate the
load conditions for finite element analysis and the corresponding principal stresses without actually
rerunning the finite model of the ETA ring.

Using the standard techniques of theory of elasticity, the stresses were calculated determinis-
tically for each ring component at critical sections identified by the NASTRAN output postprocessing.

Net (minimum) section properties were used in these analyses based on the worst-case dimen-
sions. This is the traditional minimum resistance-maximum load approach of deterministic analysis. The
corresponding margins of safety (MS) are also calculated.
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It is to be noted that all these calculations corresponding to the deterministic model are per-
formed based on the assumption that the material and the load properties are also deterministic. Since in
reality all variables have certain variation, small or large depending on the actual case, these should be
considered in the analysis. Hence probabilistic analysis is performed to study the actual safety reserve.

IV. BRIEF LITERATURE REVIEW

There has been a significant amount of work done in the past two decades in the area of relia-
bility. Notable of these are references 3 to 9 in terms of the basic development of reliability concepts. In
addition, there have been several applications by various authors.1%-17 This report does not deal in detail
with the work done by the above-referenced authors, but the work done for this report is a continuation
along the same lines but applied to shuttle structure and specifically to the ETA ring. It should also be
pointed out at this stage that the literature review quoted here relates to the work done for the present
report and is by no means an exhaustive review of all the work done in the reliability area.

V. RELIABILITY ANALYSIS

To perform a reliability analysis, the formulation of limit state function g is essential. The corre-
sponding safety index (f8) which is defined in subsequent paragraphs can then be calculated.

In this study, the reliability index () for a ring connecting the SRB to the ET for the limit state
of stress is to be calculated. B in turn depends on the mean value standard deviation of the random vari-
ables connected with the material, geometric, and load properties. Specifically, B can be defined as

ﬁ=aig, @)

where g is the limit state function, g is the mean value, and oy is the standard deviation of g. g in turn
can be expressed as

g=R-S, (3)

where R is the resistance and § is the load function for the structure under consideration. As can be seen
in figure 8, B can be considered as the measure of the number of standard deviations that the mean value
of the limit state function is from the failure surface. Figure 9 shows the demarcation of failure and
survival states.!4 If R and S both are normal or lognormal, 8 and the corresponding probability of failure
are related as

B=o(1-P), (4a)
or simply
pr=@p) , (4b)

where @ is the standard cumulative normal distribution function, and @ -1 is the inverse of the standard
cumulative normal distribution function. Figure 10 shows the actual py when R and § are both random

variables. The reliability R can then be expressed as

11
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This implies that an increase in § leads to an overall increase in the reliability of the structure. It should
be noted that equations (4a) and (4b) are not exact when the resistance and the load parameters are not
normally distributed and/or when the limit state function is not linear in its variables.

The problem would be simple if there exists a closed-form expression for the resistance variable,
load variable, and the limit state function. Even in those cases, the exact evaluation of the probability of
failure integral is almost impossible for non-normal cases. The general probability of failure function is

given:
pf:f ...f f;(xl,X2,...,xn)dxldx2...d.xn, (6)

in which f, is the joint probability density function for x;, x2, ..., X, and the integration is performed over
the region where g < 0. The above expression is based on a limit state function of g(x1, x2, ..., Xn) = 0.In
such cases, Monte Carlo simulation techniques are used to evaluate py, R, or 8.

In the present study, as the structure is complicated there are no closed-form relations between
the output variable of stress and the corresponding input variables. Hence, probabilistic study is even
more complicated in this case. The deterministic procedure used for the calculation of stresses is the
well-known finite element method (FEM). The corresponding probabilistic study, which will use Monte
Carlo techniques, will involve an FEM method in conjunction with the properties of the probability dis-
tributions of all variables involved in the calculation of the stresses at critical points.

13



Two approaches were considered in this stage. The first approach was to treat the material and
load properties as random variables while treating the geometric properties as deterministic. In this case,
actual finite element analysis is to be performed for simulated load and material properties to give prin-
cipal stresses using Monte Carlo simulation (discussed in subsequent paragraphs). The geometric prop-
erties were to be considered as deterministic to avoid remodeling of this complex mesh, realizing that
this is a shortcoming of this approach. The second approach is to treat the material, geometric, and load
properties as random variables but utilizing the results of the deterministic finite element analysis. This
is done by considering the variation of cross-sectional parameters, variation of grid point forces, mem-
brane forces, and bending moments, etc. (output of deterministic finite element analysis), and variation
of allowable stress of steel into the model and using Monte Carlo simulation to get the simulated
principal stresses. It is to be noted that in this approach the load and material properties are not explicit
random variables, but implicitly they are treated as random variables by treating the grid point forces
and membrane forces, etc., as random variables. It is this second approach that is mainly used in this

report.

The procedure is explained with respect to the limit state of stress. For a general case, the prob-
ability of failure for the limit state of stress can be expressed as:

Pr=p(CacT > OaLL) » (7a)

or
Pr=P(OALL < OaCT) - (7b)

This is like ps= p(R < S) as traditionally used, where R is the combined resistance function, and S is the
combined load function. The word combined is used here because o, whether it is actual or allowable, is
based on the material, geometric, cross-sectional, and load properties, and hence, 6aLL and CacT are not
clear cut resistance (where, in general, resistance function would involve only material, geometric, and
cross-sectional properties) and load (would involve only load parameters). oact can be expressed as:

O ACT = FilXm1s Xz s ooes X s X g1 s X g2 o0 X gms X1 5 X (2 woer X oo X1 5 X 20 X ) 8)

where

xm1 = first variable representing material property
xg1 = first variable representing geometric property
xc1 = first variable representing cross-sectional property

x11 = first variable representing load properties directly or the output parameter of the finite
element analyses (like the membrane force, grid point force, etc.).

In the present study, oacr is the principal stress op. The design nominal (deterministic) values of these
variables were obtained from the structures materials/load group! at MSFC and from the available litera-
ture. Since a probabilistic study is to be performed with the intent of final calculation of reliability, the
variation of these parameters is required. To be specific, the statistical properties (like the mean value
and coefficient of variation) of the distribution and the type of the distribution followed by these vari-
ables is required. The relevant expressions are given as:

14



X=BX, o)
v,=[v-0]" (10)
Vp=[v2evi+. VA", (11)

where )? and V, are the estimates of the mean value and the coefficient of variation based on the avail-
able data; X and V, are the “true” mean and coefficient of variation of the variable; and B and Vj are the

mean value and standard deviation of bias factor. If the model is unbiased, B =1 and Vg = 0. If the data
are limited, x and V, can be calculated from,

x= , (12)
2
A . W (13)
L (x,+x,)
2 2™

where it is assumed that 95 percent of the values lie between x; and x;. x; and x; can be considered as
the practical extreme limits.

Similarly, a1 can be expressed as,
O ALL = B m1 X2 oor X s X g1 5 X g2 > s Xgno X1 5 X 25 wos X ems X115 X 25+ X 1) (14)

which is a different function using the allowable values of the input variables. Alternatively, oaLL may
be deterministic if it is a value taken from the governing codes for that structure. In any case, there is no
closed-form expression for Gact or 641 1. The computer will take the random values of the input vari-
ables, go through finite element code (or use the results with a certain coefficient of variation), and using
Monte Carlo techniques will calculate the stresses at different critical points. Once finite element analy-
sis of these hypothetical rings is done (or the variation of the output parameters is considered) in con-
junction with Monte Carlo techniques, a statistical analysis is done to calculate py and the safety index
along with the reliability level using equations discussed above. Similar reliability analysis can be done
for other limit states of the structure. In the present study, cap1 is (6,)aLL the ultimate allowable or (o)
the yield allowable stress depending on the actual case being considered.

The detailed procedure of Monte Carlo simulation in conjunction with the deterministic finite
element analysis is given below:!8

1. Generate a random number r; between 0 and 1 using Rand Corporation procedure or stand-
ard subroutines in the computer corresponding to a uniform distribution for any input variable dealing
with cross section, load/force parameter and also for allowable stress. Note at this stage all the necessary
random numbers for all input variables are generated either dealing with both actual stress oact Or Op
and also allowable stress for oay .

2. For the actual random value to be generated for any variable corresponding to a given distri-

bution, the statistical properties of that variable are needed, like x and V. Calculate x and V, from the
available experimental data and then calculate x and V, from equations (9) to (11) using the proper bias
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factor. In the absence of sufficient data for any of the input random variable x, calculate x and V, from
equations (12) and (13).

3. Since all the variables are assumed to be normal, the transformation of random numbers
from uniform to normal is performed using,

Ci=@r) , (15)

where C; is a standardized random number such that it is normally distributed with mean = 0 and vari-
ance = 1. @ -1is the inverse of the standard cumulative normal distribution function. Note that standard
subroutines are available to perform such an operation. IT is also to be noted that equation (15) uses the
r; values generated in step 1.

4. Knowing C; values from equation (15) and x and V, from step 2, a random value of x can
then be generated using

x,-=)2+st,- R (16)
where s, is the standard deviation of x given by s, =xV,.

5. Generate random values for all independent variables (as mentioned in step 1) following
steps 1 to 4 and then using Monte Carlo simulation and the equations of theory or elasticity to calculate
principal stresses for all the critical elements of these hypothetical rings subjected to hypothetical
loads/forces. It is to be noted that the word hypothetical is not used to indicate that these rings and the
loads are all fictitious but instead it indicates that the deterministic ring problem is now studied by per-
turbing its material, geometric, and load properties consistent with the actual structural behavior. Since it
is now widely accepted that no variable is truly deterministic, this study attains significant importance.

6. Having obtained a set of random values for each of the dependent variables like o411 and
OacT, perform statistical analysis of the required parameters. This could be the mean value, standard
deviation, and coefficient of variation of all the response parameters.

7. Calculate the probability of failure of an event corresponding to equation (7b) from

n

Pr= 7’ ) a7
where n) is the number of times that an event has occurred in a sample size of n. For example, to calcu-
late py corresponding to equations (7a) and (7b), once a random number has been generated for a1 or
6p and O, it is checked if oaLL < OacT. If it is true, then it corresponds to a failure event. Such occur-
rences are totaled for the sample size, and py is then calculated from equation (17).

8. Knowing py, one can calculate reliability R from equation (5).
9. The safety index B can be calculated from equation (4a) if the distribution of all the input
variables is normal. Otherwise f3 can be calculated using equation (2) where g and o, are the results

obtained from step 6. However, this approach is not used in this study as all variables are assumed
normal.
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10. Steps 6 to 9 can be repeated for all the limit states of the ring problem. In the present study,
only one limit state (stress) is considered.

11. The effect of coefficient of variation of some of the critical input parameters on reliability of
the ring (with respect to various limit states) will be studied as part of the overall behavioral study of the
ring.

If resistance and load functions are approximated as normal, then the safety index (B) has a
closed-form expression given by,

RS (1)

f=————
voitol n2Vivi

where n = RIS, Vr = 0/R, and Vs = o /$. For the notations of this report, R is GaLL and S is the gacT OF
0Op- Similarly for resistance and load functions being lognormal, B is given by,

(18)

In(n)
=—— (19
p v Vv )

For the variables not conforming to the above standard cases, ff can be obtained numerically. As
explained earlier, R and § in this report correspond to GaLL and GacT respectively.

VI. FORMULATION OF THE PROBLEM

As mentioned previously in this report, the components of the ETA ring that are critical were
tunnel splices and H-fittings. In each of these components, there are few sections that were found critical
based on deterministic analysis.! For all these cases, the reliability levels with respect to the limit state of
stress are calculated. The final output of the probabilistic analysis is principal stress op. Hence, the prob-
ability of failure corresponding to equation (7b) can be written as:

Pr=PUODALL<OY) » (20)
similarly for ultimate allowable stress

Pau=pPUOIA1L<Op) . (21)
Knowing py, and py,, the corresponding reliability values Ry and R, can be easily calculated from the
generic equation (5) given earlier. The safety indices B can be calculated from equation (18) as the vari-

ables have been assumed to be normal.

At this point, it is important to note that in a deterministic analysis the MS is calculated using the
equation given below:!

(0y) aLLOW
-1, 2
I1(0,) actunt (22)

MS)yipp=
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for ultimate allowable stress:

__(@y)aLow
(MS)ULT = 1.4 (ap)ACTUAL -1. (23)

The factors 1.1 and 1.4 that are used in equations (22) and (23) represent the safety factor in yield and
ultimate allowable stress. Since safety factor is nothing but an ignorance factor and was introduced to
compensate for all uncertainties, it should be discarded in reliability analysis as is traditionally done.
That raises an important question with regard to equations (20) and (21). If in an analysis the data show
that the basic variability in (6,)aLL and (Gw)ALL is the same, that would indicate that Psu is smaller than
Pyy and hence is not as critical as the yield case. This is opposite to the general notion in deterministic
analysis wherein the ultimate case is more critical than yield due to different safety factors. This should
also be considered along with the fact that taking sf = s/S (where s is the allowable stress and S is the
actual stress). It can be proved that

Vy=v o0} ,

considering both as random variables. In cases where either o or g, the standard deviation in allowable
and actual stress, is high, V, the coefficient of variation could be high. In some cases, this may have to
be included in the model as an additional uncertainty in addition to the usual uncertainty in material
geometric and load properties making sure it is not considered twice. On the whole, the authors of this
report feel that so far as the reliability analysis is concerned it is the ultimate allowable stress (limiting
stress) that is important. Provided that data are collected properly and proper statistical tools are used,
the uncertainty in material, geometric, and load properties should take care of the safety factor auto-
matically, and the reliability analysis should give a reasonable idea of the safety reserve in the structure.
The results in this report are given using limit state stress of ()ALl -

For a ready comparison of probabilistic margin of safety (PMS), values are calculated for com-
parison with the corresponding deterministic MS. This is given as

PMS = (Gu)ALl:;(’(udp)MAx ’ 24)
where,
(G Pmax = +BS,, (25)
here,

(0u)aLL = expected value of allowable stress
Sou = standard deviation of allowable stress
Sgp = standard deviation of principal stress
6, = mean value of principal stress

B = safety index of the structure with respect to stress limit state.
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The reliability analysis of the above mentioned critical components will now be discussed in
detail.

The results for the basic cases of critical sections (cases A to E) are obtained for a sample of size
of 5,000 random numbers using the variance reduction techniques# and for the following basic values of
input parameters: V¢ = 0.01, Vy=0.06, Vas = 0.022, Cync = 1.15, Cynr = 1.0, and Cyns = 1.055, where
V stands for coefficient of variation, and C stands for coefficient of mean/normal. The subscripts C, F,
and A for V stands for cross-sectional parameters, forces (grid point forces, membrane forces, and
bending moments), and allowable stress, respectively. The subscripts MNC, MNF, and MNS for C stand
for mean to nominal for cross-sectional parameters, mean to nominal for forces (grid point, membrane,
and bending moments), and mean to nominal for allowable stress parameters, respectively. The effects
of other V and C values are studied under sensitivity analysis. The V. values are actually lower/higher
than 0.01 for some cross-sectional parameters based on the general data in the literature.12 16 20 To avoid
any ambiguity, the probabilistic data for input parameters are tabulated for cases A to E when those
cases are dealt with in the report individually.

A. 90° Forward Tunnel Splice Plate (Minimum Section)

This corresponds to USBI drawing 10170-0367 from reference 1. The general expression for

principal stress is given by,!
o ,+0 0,—0,\?
0'p1,0'p2=———12 ’i\/( ’2 y) +7%,, (26)

0 ,=MAX(6 ,,6 ) (27)

which is considered for reliability calculation.

E 28
TU—X:’ ( )
F MC
c.=-2+212, 29
Y Ay I,
F MC MC
O.xz__x+_2_y+_5_2. (30)
A, Iz Iy

Cx, Oy, and 7y, represent normal stresses in x and y direction and shearing stress, respectively. Fy Fy, Fyy,
My, My, and M, are the element membrane forces and bending moments. Ay, Ay, Ixe, Iy, and /, are cross-
sectional properties. These parameters can be obtained knowing the critical cross section. The critical
cross section for this is shown in figures 11 and 12.

It is to be noted that all the values shown are nominal/design values. Table 2 shows the list of all
the basic input variables used in the probabilistic analysis including that for allowable stress of steel. The

information regarding x/xn for any variable and the coefficient of variation is obtained from discussions
with the relevant groups at MSFC and based on existing data in the literature. !4 20-22 The results are
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Figure 11. Cross-sectional parameters and grid point forces for critical section of case A (from ref. 1).

el

Figure 12. Cross-sectional parameters for critical section of case A (ref. 1) (view AA of fig. 11).
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Table 2. Case A: Probabilistic input parameters.

Parameters Nominal Mean/Nom Est. Cov. Bias Cov. Bias
T 0.240 1.15 0.0400 1.01 0.05
D1 2.690 1.15 0.0042 1.01 0.05
D2 0.285 1.15 0.0042 1.01 0.05
D4 0.510 1.15 0.0042 1.01 0.05
Wmin 2.369 1.15 0.0042 1.01 0.05
Wmax 2.452 1.15 0.0042 1.01 0.05
T21 2,105.000 1.0 0.060 0.95 0.05
T221 4,147.000 1.0 0.060 0.95 0.05
T222 6,431.000 1.0 0.060 0.95 0.05
T231 10,178.000 1.0 0.060 0.95 0.05
T232 8,157.000 1.0 0.060 0.95 0.05
T241 11,615.000 1.0 0.060 0.95 0.05
Fy 1,079.000 1.0 0.060 0.95 0.05
Mx1 -2.160 1.0 0.060 0.95 0.05
Mx2 32.300 1.0 0.060 0.95 0.05
Mx3 57.490 1.0 0.060 0.95 0.05
My 69.220 1.0 0.060 0.95 0.05
Fxyl -590.500 1.0 0.060 0.95 0.05
Fxy2 -961.400 1.0 0.060 0.95 0.05
Fxy3 ~-162.000 1.0 0.060 0.95 0.05
FSY 1.100 1.0 0.01 1.00 0.00
FSU 1.400 1.0 0.01 1.00 0.00
SIGy 163.000 1.055 0.022 1.00 0.00
SIGu 180.000 1.055 0.022 1.00 0.00

obtained in terms of probability of failure using Monte Carlo simulation discussed earlier in this report.
The corresponding reliability is then calculated from equation (5). The safety index 8 and PSM are cal-
culated from equations (18) and (24), respectively. The results are shown below:

g,=97.98 Sop =9.39 6,=189.9 Sou=4.17

Pru = 0.15x10-14 R, =0.904 =893 PMS =1.89.

This shows a high PMS compared to the corresponding deterministic MS of —0.03. It is to be noted that
the principal stress has a high coefficient of variation. Figure 13 shows the Warner diagram for case A.
A detailed discussion appears later.
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B. 90° Aft Tunnel Splice (Small Section)

This corresponds to USBI drawing 10170-0372 from reference 1. The critical section is shown
in figure 14. The input data are shown in table 3. The results are shown below.

0,=131.39 Sgp = 14.98 d,=189.9 Sou=4.17
Pra = 8.03x104 «=0.99919 « = 3.7604 PMS =0.5143 .

Again a good reliability level is seen in the results. The PMS of 0.5143 is much higher than the corre-
sponding deterministic MS of —0.24. The corresponding probability of failure diagram is shown in
figure 15.

A
D4| & + B
A
|
+ D, [

a) CROSS SECTIONAL PROPERTIES

X
)
T
1
Tot ‘ T221 T222 23
GRID POINT FORCES “\
542 541|541 540 | ~#—————— Node Numbers
250 050 {050 050
Dy 542 541
249 049
542 541|541 540
Y - 249 0491049 049
D | Dy
Bz + Dy

b) CROSS SECTIONAL PROPERTIES AND
GRID POINT FORCES

Figure 14. Cross-scctional properties and grid point forces for critical section of case B (from ref. 1).
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Table 3. Case B: Probabilistic input parameters.

Parameters Nominal Mean/Nom Est. Cov. Bias Cov. Bias
D1 2.250 1.15 0.0042 1.01 0.05
D2 0.590 1.15 0.0042 1.01 0.05
D3 0.600 1.15 0.0042 1.01 0.05
D4 0.300 1.15 0.0042 1.01 0.05
DS 1.160 1.15 0.0042 1.01 0.05
T21 10,967.000 1.0 0.06 0.95 0.05
T221 6,243.000 1.0 0.06 0.95 0.05
T222 10,236.000 1.0 0.06 0.95 0.05
T231 6,681.000 1.0 0.06 0.95 0.05
Fx1 29,176.000 1.0 0.06 0.95 0.05
Fx2 28,134.000 1.0 0.06 0.95 0.05
Mx1 485.000 1.0 0.06 0.95 0.05
Mx2 453.000 1.0 0.06 0.95 0.05
Fy -917.000 1.0 0.06 0.95 0.05
Myl 41.200 1.0 0.06 0.95 0.05
Fxyl 2,117.000 1.0 0.06 0.95 0.05
Fxy2 1,675.000 1.0 0.06 0.95 0.05
FSY 1.100 1.0 0.06 1.00 0.00
FSU 1.400 1.0 0.06 1.00 0.00
SIGy 163.000 1.055 0.022 1.00 0.00
SIGu 180.000 1.055 0.022 1.00 0.00
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C. 90° Forward Tunnel Splice (Critical Section)
This corresponds to USBI drawing 10170-0367 of reference 1. The critical sections are shown in
figure 16. The probabilistic input parameters used for reliability analysis are shown in table 4. The
results are shown below.

G,=118.27 Sop =21.39 ,=189.9 Sou=4.17
pru = 0.0036 R, =0.9964 By =3.285 PMS =0.317.
The corresponding deterministic MS is —0.22. This shows that probabilistic analysis has predicted a

higher safety reserve than was calculated in the deterministic analysis. The corresponding Warner dia-
gram is shown in figure 17.

X
[}
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e
————
Taz
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049 049 049 04904
ADDED
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9 049 049 049 049
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Dy
CENTROID l

b) CROSS SECTIONAL PROPERTIES AND
GRID POINT FORCES

Figure 16. Cross-sectional properties and grid point forces for critical section of case C (from ref. 1).
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Table 4. Case C: Probabilistic input parameters.

Parameters Nominal Mean/Nom Est. Cov. Bias Cov. Bias
T 0.235 1.15 0.0400 1.01 0.05
D1 0.285 1.15 0.0042 1.01 0.05
D2 0.510 1.15 0.0042 1.01 0.05
D3 2.134 1.15 0.0042 1.01 0.05
D4 0.202 1.15 0.040 1.01 0.05
D5 0.769 1.15 0.040 1.01 0.05
D6 4.030 1.15 0.0042 1.01 0.05
D7 3.210 1.15 0.0042 1.01 0.05
D8 1.960 1.15 0.0042 1.01 0.05
D9 1.800 1.15 0.0042 1.01 0.05
D10 0.820 1.15 0.0042 1.01 0.05
D11 1.250 1.15 0.0042 1.01 0.05
D12 1.350 1.15 0.0042 1.01 0.05
D13 0.740 1.15 0.0042 1.01 0.05
D14 1.660 1.15 0.0042 1.01 0.05
D15 1.040 1.15 0.0042 1.01 0.05
Wm 2.450 1.15 0.0042 1.01 0.05
T21 7,498.000 1.0 0.060 0.95 0.05
T221 10,470.000 1.0 0.060 0.95 0.05
T222 10,749.000 1.0 0.060 0.95 0.05
T231 15,603.000 1.0 0.060 0.95 0.05
T232 13,299.000 1.0 0.060 0.95 0.05
T241 11,100.000 1.0 0.060 0.95 0.05
T242 5,717.000 1.0 0.060 0.95 0.05
Fy 1,077.000 1.0 0.060 0.95 0.05
Mx1 24.100 1.0 0.060 0.95 0.05
Mx2 75.600 1.0 0.060 0.95 0.05
Mx3 -8.900 1.0 0.060 0.95 0.05
Mx4 -6.700 1.0 0.060 0.95 0.05
Myl 237.000 1.0 0.060 0.95 0.05
Fxyl —1,005.000 1.0 0.060 0.95 0.05
Fxy2 -2,539.000 1.0 0.060 0.95 0.05
Fxy3 -399.200 1.0 0.060 0.95 0.05
Fxy4 402.000 1.0 0.060 0.95 0.05
Fx 5,476.000 1.0 0.060 0.95 0.05
Fsy 1.100 1.0 0.01 1.00 0.00
Fsu 1.400 1.0 0.01 1.00 0.00
SIGy 163.000 1.055 0.022 1.00 0.00
SIGu 180.000 1.055 0.022 1.00 0.00
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D. H-Fitting (Plates)

This corresponds to USBI drawing 10170-0011 from reference 1. The critical section and the
associated cross-section parameters are shown in figures 18 and 19. The probabilistic input parameters
are shown in table 5. The results of reliability are shown below.

g ,=72.396 Sop = 6.503 o,=189.9 Sou=4.171
pru = (<10-14) R, =1.09 B. =15.201 PMS =4.461 .

It is to be noted that the PMS is quite high. The corresponding deterministic MS was +0.52. The corre-
sponding Warner diagram is shown in figure 20.

E. H-Fitting (Lugs)

This corresponds to USBI drawing 10170-011 of reference 1. The critical section and the asso-
ciated cross-sectional parameters are shown in figures 21 and 22. The probabilistic input parameters are
shown in table 6. The results are shown below.

0 ,=116.15 Sop = 14.39 G,=189.9 Sou=4.17
P = 0.37x10-6 R, =0.9 B =4.920 PMS =0.699 .

Once again it has been shown that PMS (0.699) is much higher than the deterministic MS of —0.21. The
corresponding Warner diagram is shown in figure 23.

VII. SENSITIVITY ANALYSIS

As mentioned above, cases A to E were studied for some basic core parameters as discussed in
section VL Since no actual experimental data were available for the input parameters and the data used
were based on the available data in the literature and the discussions with the load and stress group at
MSFEC, it was found prudent to study the effect of variation of the input parameters on the reliability of
the ETA ring for the stress limit state for most critical components at critical sections. Based on the
results obtained for cases A to E and looking at the corresponding Warner diagrams, it is seen that the
overlap between the actual principal stress and the allowable ultimate stress is higher for cases B and E
compared to cases A, C, and D; while the PMS is consistently higher than the corresponding MS for
deterministic analysis. Hence, the sensitivity analysis study is conducted for case B (tunnel splice plate)
and case E (H-fitting lugs).

This study is done by studying the effect of variation of coefficient of cross-sectional parameters
~ (V,), force parameters (Vy) like membrane forces, bending moments, etc., allowable stress parameters
(V4s) on the reliability of the ETA ring, taken one at a time. The basic values considered are V. =0.01,
Vy=0.06, and V5= 0.022. These results are shown in figures 24 to 27 for case B and in figures 28 to 31
for case E. In addition to this, the effect of #/xn denoted as ¢, (coefficient of mear to nominal), on
reliability is studied for various cross-sectional parameters (Cypnc), force parameters (Cnp), and
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Table 5. Case D: Probabilistic input parameters.

Parameters Nominal Mean/Nom Est. Cov, Bias Cov. Bias
Tl 0.430 1.15 0.0400 1.01 0.05
D1 0.515 1.15 0.0042 1.01 0.05
D2 0.971 1.15 0.0042 1.01 0.05
D3 0.421 1.15 0.0042 1.01 0.05
D4 1.366 1.15 0.0042 1.01 0.05
D5 0.964 1.15 0.0042 1.01 0.05
D6 0.325 1.15 0.0042 1.01 0.05
D7 6.940 1.15 0.0042 1.01 0.05
D8 5.820 1.15 0.0042 1.01 0.05
D9 4.470 1.15 0.0042 1.01 0.05
D10 3.395 1.15 0.0042 1.01 0.05
D11 2.123 1.15 0.0042 1.01 0.05
D12 1.328 1.15 0.0042 1.01 0.05
D13 0.163 1.15 0.0042 1.01 0.05
YBN 3.345 1.15 0.0042 1.01 0.05
D14 6.395 1.15 0.0042 1.01 0.05
D15 5.145 1.15 0.0042 1.01 0.05
D16 3.795 1.15 0.0042 1.01 0.05
D17 2.445 1.15 0.0042 1.01 0.05
D18 1.525 1.15 0.0042 1.01 0.05
D19 0.585 1.15 0.0042 1.01 0.05
D20 0.940 1.15 0.0042 1.01 0.05
D21 0.920 1.15 0.0042 1.01 0.05
D22 1.350 1.15 0.0042 1.01 0.05
D23 1.250 1.15 0.0042 1.01 0.05
Wm 2.150 1.15 0.0042 1.01 0.05
D24 7.200 1.15 0.0042 1.01 0.05
Wmin 1.740 1.15 0.0042 1.01 0.05
T21 10,252.000 1.0 0.060 0.95 0.05
T221 17,205.000 1.0 0.060 0.95 0.05
T222 14,139.000 1.0 0.060 0.95 0.05
T231 15,936.000 1.0 0.060 0.95 0.05
T232 15,530.000 1.0 0.060 0.95 0.05
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Table 5. Case D: Probabilistic input parameters (continued).

Parameters Nominal Mean/Nom Est. Cov. Bias Cov. Bias
T241 8,955.000 1.0 0.060 0.95 0.05
T242 11,708.000 1.0 0.060 0.95 0.05
T251 3,473.000 1.0 0.060 0.95 0.05
T252 13,460.000 1.0 0.060 0.95 0.05
T261 4,146.000 1.0 0.060 0.95 0.05
Fyl 9,298.000 1.0 0.060 0.95 0.05
Fxyl -3,531.000 1.0 0.060 0.95 0.05
Fxy2 -6,824.000 1.0 0.060 0.95 0.05
Fxy3 —-11,864.000 1.0 0.060 0.95 0.05
Fxy4 -11,186.000 1.0 0.060 0.95 0.05
Fxy$5 -9,245.000 1.0 0.060 0.95 0.05
Mx1 -82.100 1.0 0.060 0.95 0.05
Mx2 91.500 1.0 0.060 0.95 0.05
Mx3 -39.600 1.0 0.060 0.95 0.05
Mx4 -230.000 1.0 0.060 0.95 0.05
Mx5 -625.000 1.0 0.060 0.95 0.05
Myl -440.000 1.0 0.060 0.95 0.05
T2H 0.250 1.15 0.0400 1.01 0.05
FSY 1.100 1.0 0.01 1.00 0.00
FSU 1.400 1.0 0.01 1.00 0.00
SIGy 150.000 1.055 0.022 1.00 0.00
SIGu 180.000 1.055 0.022 1.00 0.00
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Figure 21. H-fitting lug section (case E) (from ref. 1).
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Figure 22. Cross-sectional properties and grid point forces for critical section of case E (from ref. 1).
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Parameters
TH1
Dl
D2
D3
D4
T11
T21
T121
T122
T221
T222
T13
T231

Mx2

Table 6. Case E: Probabilistic input parameters.

Nominal
1.440
0.760
0.770
0.990
1.499

-41.300
30.060
9.930
-6.720
58.430
53.520
0.780
72.500
4.680
0.140
0.260
3.920
214.510
1.100
1.400
150.000
180.000

Mean/Nom

1.15
1.15
1.15
1.15
1.15
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.055
1.055

Est. Cov.
0.0400
0.0042
0.0042
0.0042
0.0042
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.01
0.01
0.022
0.022

Bias
1.01
1.01
1.01
1.01
1.01
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
1.00
1.00
1.00
1.00

Cov. Bias
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.00
0.00
0.00
0.00
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allowable stress parameters (C,,,;). To be specific, C,., stands for coefficient of mean to nominal for
cross-sectional parameters, Cyyy Stands for coefficient of mean to nominal for force parameters, and Cyps
stands for coefficient of variation of mean to nominal for stress parameters. The basic values considered
are Cpune = 1.15, Cpuny = 1.0, and Cypps 1.055. These results are shown in figures 32 to 35 for case B and
in figures 36 to 39 for case E.

The effect of the sample size of random numbers on the reliability of the ETA ring is also studied
by varying the number of random numbers from 5,000 to 20,000 and using varying reduction techniques
as well as direct Monte Carlo simulation. The effect is found to be insignificant so far as the reliability
values of the ETA ring are concerned.

VIII. DISCUSSION OF RESULTS AND CONCLUSIONS

It can be seen from various cases discussed earlier in section VI that the coefficient of variation
of the principal stress is greater than or equal to (.10, and, in case D, it is as high as 0.18 even though the
input coefficient of variation is not very high. This is because the expression for principal stress
(equation (27)) is highly nonlinear and is a function of other dependent variables like normal and shear
stresses. It should be noted that these stresses are again nonlinear functions of some dependent and inde-
pendent variables. The cumulative effect of all this is reflected in the coefficient of variation of one of
the limit state variables of principal stress. This in effect affects the reliability levels.

Looking at figures 27 and 31, it can be seen that the V. has maximum effect on reliability for
cases B and E. Similarly, looking at figures 35 and 39, it can be seen that C,,,. has maximum effect on
reliability for cases B and E. Another interesting point to be noted from these figures is that the optimal
value (the common intersection point) of C,, is approximately 1.1 for both cases B and E.

On the whole, the technique of Monte Carlo simulation with and without variance reduction
techniques has been used successfully for evaluation of reliability levels of the ETA ring for the stress
limit state. The cross-sectional parameters are found to be most critical as their effect on reliability is
found to be maximum. Reliability levels in general are found to be high and appear to be supportive of
the deterministic results and with a higher safety reserve.
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